Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 9.886
1.
Phytochemistry ; 213: 113766, 2023 Sep.
Article En | MEDLINE | ID: mdl-37343736

The increased activity of PARP enzymes is associated with a deficiency of NAD+, as well as with a loss of NADPH and ATP, and consequent deterioration of the redox state in fruits. In this study, we checked whether treatment with nicotinamide (NAM) would affect PARP-1 expression and NAD+ metabolism in strawberry fruit during storage. For this purpose, strawberry fruits were treated with 10 mM NAM and co-treated with NAM and UV-C, and then stored for 5 days at 4 °C. Research showed that nicotinamide contributes to reducing oxidative stress level by reducing PARP-1 mRNA gene expression and the protein level resulting in higher NAD+ availability, as well as improving energy metabolism and NADPH levels in fruits, regardless of whether they are exposed to UV-C. The above effects cause fruits treated with nicotinamide to be characterised by higher anti-radical activity, and a lower level of reactive oxygen species in the tissue.


Food Storage , Fragaria , Fruit , Niacinamide , Catalase , Crop Production/methods , Electron Transport Complex II , Food Storage/methods , Fragaria/drug effects , Fragaria/metabolism , Fragaria/radiation effects , Fruit/drug effects , Fruit/metabolism , Fruit/radiation effects , Gene Expression Regulation, Plant/drug effects , Gene Expression Regulation, Plant/radiation effects , NAD/metabolism , NADP/metabolism , Niacinamide/pharmacology , Oxidation-Reduction/drug effects , Oxidation-Reduction/radiation effects , Oxidative Stress/drug effects , Oxidative Stress/radiation effects , Poly (ADP-Ribose) Polymerase-1/genetics , Poly (ADP-Ribose) Polymerase-1/metabolism , Reactive Oxygen Species/metabolism , RNA, Messenger , Superoxide Dismutase , Ultraviolet Rays
2.
J Biol Chem ; 299(6): 104792, 2023 06.
Article En | MEDLINE | ID: mdl-37150321

Necroptosis is a form of regulated cell death triggered by various host and pathogen-derived molecules during infection and inflammation. The essential step leading to necroptosis is phosphorylation of the mixed lineage kinase domain-like protein by receptor-interacting protein kinase 3. Caspase-8 cleaves receptor-interacting protein kinases to block necroptosis, so synthetic caspase inhibitors are required to study this process in experimental models. However, it is unclear how caspase-8 activity is regulated in a physiological setting. The active site cysteine of caspases is sensitive to oxidative inactivation, so we hypothesized that oxidants generated at sites of inflammation can inhibit caspase-8 and promote necroptosis. Here, we discovered that hypothiocyanous acid (HOSCN), an oxidant generated in vivo by heme peroxidases including myeloperoxidase and lactoperoxidase, is a potent caspase-8 inhibitor. We found HOSCN was able to promote necroptosis in mouse fibroblasts treated with tumor necrosis factor. We also demonstrate purified caspase-8 was inactivated by low concentrations of HOSCN, with the predominant product being a disulfide-linked dimer between Cys360 and Cys409 of the large and small catalytic subunits. We show oxidation still occurred in the presence of reducing agents, and reduction of the dimer was slow, consistent with HOSCN being a powerful physiological caspase inhibitor. While the initial oxidation product is a dimer, further modification also occurred in cells treated with HOSCN, leading to higher molecular weight caspase-8 species. Taken together, these findings indicate major disruption of caspase-8 function and suggest a novel mechanism for the promotion of necroptosis at sites of inflammation.


Caspase 8 , Necroptosis , Oxidants , Tumor Necrosis Factors , Animals , Mice , Caspase 8/chemistry , Caspase 8/metabolism , Inflammation/metabolism , Necroptosis/drug effects , Oxidants/metabolism , Oxidants/pharmacology , Oxidation-Reduction/drug effects , Tumor Necrosis Factors/metabolism , Fibroblasts/drug effects , Fibroblasts/enzymology , Fibroblasts/metabolism , Peroxidase , Lactoperoxidase , Catalytic Domain
3.
Rejuvenation Res ; 26(4): 139-146, 2023 Aug.
Article En | MEDLINE | ID: mdl-37166369

Acarbose (ACA), a well-studied and effective inhibitor of α-amylase and α-glucosidase, is a postprandial-acting antidiabetic medicine. The membrane of the erythrocyte is an excellent tool for analyzing different physiological and biochemical activities since it experiences a range of metabolic alterations throughout aging. It is uncertain if ACA modulates erythrocyte membrane activities in an age-dependent manner. As a result, the current study was conducted to explore the influence of ACA on age-dependent deteriorated functions of transporters/exchangers, disrupted levels of various biomarkers such as lipid hydroperoxides (LHs), protein carbonyl (PCO), sialic acid (SA), total thiol (-SH), and erythrocyte membrane osmotic fragility. In addition to a concurrent increase in Na+/H+ exchanger activity and concentration of LH, PCO, and osmotic fragility, we also detected a considerable decrease in membrane-linked activities of Ca2+-ATPase (PMCA) and Na+/K+-ATPase (NKA), as well as concentrations of SA and -SH in old-aged rats. The aging-induced impairment of the activities of membrane-bound ATPases and the changed levels of redox biomarkers were shown to be effectively restored by ACA treatment.


Acarbose , Aging , Erythrocyte Membrane , Glycoside Hydrolase Inhibitors , Plasma Membrane Calcium-Transporting ATPases , Sodium-Potassium-Exchanging ATPase , Acarbose/pharmacology , Glycoside Hydrolase Inhibitors/pharmacology , Erythrocyte Membrane/chemistry , Erythrocyte Membrane/drug effects , Erythrocyte Membrane/enzymology , Aging/drug effects , Aging/metabolism , Lipid Peroxides/analysis , Sialic Acids/analysis , Protein Carbonylation/drug effects , Sulfhydryl Compounds/analysis , Osmotic Fragility/drug effects , Animals , Rats , Male , Rats, Wistar , Plasma Membrane Calcium-Transporting ATPases/analysis , Plasma Membrane Calcium-Transporting ATPases/metabolism , Sodium-Potassium-Exchanging ATPase/analysis , Sodium-Potassium-Exchanging ATPase/metabolism , Oxidation-Reduction/drug effects , Biomarkers/analysis , Biomarkers/metabolism
4.
J Dermatol Sci ; 109(2): 61-70, 2023 Feb.
Article En | MEDLINE | ID: mdl-36725458

BACKGROUND: Cannabidiol, a non-psychoactive phytocannabinoid, has antioxidant and anti-inflammatory activity in keratinocytes. However, the signaling pathway through which cannabidiol exerts its effect on keratinocytes or whether it can modulate keratinocyte differentiation has not been fully elucidated yet. OBJECTIVE: We investigated whether cannabidiol modulates epidermal differentiation and scavenges reactive oxygen species through the aryl hydrocarbon receptor (AhR) in keratinocytes and epidermal equivalents. METHODS: We investigated the cannabidiol-induced activation of AhR using AhR luciferase reporter assay, qRT-PCR, western blot, and immunofluorescence assays. We also analyzed whether keratinocyte differentiation and antioxidant activity are regulated by cannabidiol-induced AhR activation. RESULTS: In both keratinocytes and epidermal equivalents, cannabidiol increased both the mRNA and protein expression of filaggrin, involucrin, NRF2, and NQO1 and the mRNA expression of the AhR target genes, including CYP1A1 and aryl hydrocarbon receptor repressor. Additionally, cannabidiol showed antioxidant activity that was attenuated by AhR knockdown or co-administration with an AhR antagonist. Moreover, cannabidiol increased the ratio of OVOL1/OVOL2 mRNA expression, which is a downstream regulator of AhR that mediates epidermal differentiation. In addition to increased expression of barrier-related proteins, cannabidiol-treated epidermal equivalent showed a more prominent granular layer than the control epidermis. The increased granular layer by cannabidiol was suppressed by the AhR antagonist. CONCLUSION: Cannabidiol can be a modulator of the AhR-OVOL1-filaggrin axis and AhR-NRF2-NQO1 signaling, thus indicating a potential use of cannabidiol in skin barrier enhancement and reducing oxidative stress.


Cannabidiol , Epidermis , Keratinocytes , Receptors, Aryl Hydrocarbon , Antioxidants/pharmacology , Antioxidants/metabolism , Cannabidiol/pharmacology , Cannabidiol/metabolism , Epidermis/drug effects , Epidermis/metabolism , Filaggrin Proteins , Homeostasis/drug effects , Keratinocytes/drug effects , Keratinocytes/metabolism , NF-E2-Related Factor 2/metabolism , Oxidation-Reduction/drug effects , Receptors, Aryl Hydrocarbon/metabolism , RNA, Messenger/metabolism , Signal Transduction , Cell Differentiation/drug effects , Cell Differentiation/physiology
5.
Cell Cycle ; 22(8): 870-905, 2023 04.
Article En | MEDLINE | ID: mdl-36648057

Disruption of the complex network that regulates redox homeostasis often underlies resistant phenotypes, which hinder effective and long-lasting cancer eradication. In addition, the RNA methylome-dependent control of gene expression also critically affects traits of cellular resistance to anti-cancer agents. However, few investigations aimed at establishing whether the epitranscriptome-directed adaptations underlying acquired and/or innate resistance traits in cancer could be implemented through the involvement of redox-dependent or -responsive signaling pathways. This is unexpected mainly because: i) the effectiveness of many anti-cancer approaches relies on their capacity to promote oxidative stress (OS); ii) altered redox milieu and reprogramming of mitochondrial function have been acknowledged as critical mediators of the RNA methylome-mediated response to OS. Here we summarize the current state of understanding on this topic, as well as we offer new perspectives that might lead to original approaches and strategies to delay or prevent the problem of refractory cancer and tumor recurrence.


Antineoplastic Agents , Neoplasms , Oxidative Stress , RNA Processing, Post-Transcriptional , RNA , RNA/genetics , RNA/metabolism , Methylation/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Oxidative Stress/drug effects , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , Neoplasms/therapy , Epigenesis, Genetic/drug effects , Transcriptome/drug effects , Oxidation-Reduction/drug effects , Epigenome/drug effects , Mitochondria/drug effects , Mitochondria/metabolism , Recurrence , Humans , Animals , RNA Processing, Post-Transcriptional/drug effects , Homeostasis/drug effects , Reactive Oxygen Species/metabolism
6.
Front Endocrinol (Lausanne) ; 13: 973058, 2022.
Article En | MEDLINE | ID: mdl-36060954

Protein kinase C (PKC) is a family of serine/threonine protein kinases, the activation of which plays an important role in the development of diabetic microvascular complications. The activation of PKC under high-glucose conditions stimulates redox reactions and leads to an accumulation of redox stress. As a result, various types of cells in the microvasculature are influenced, leading to changes in blood flow, microvascular permeability, extracellular matrix accumulation, basement thickening and angiogenesis. Structural and functional disorders further exacerbate diabetic microvascular complications. Here, we review the roles of PKC in the development of diabetic microvascular complications, presenting evidence from experiments and clinical trials.


Diabetic Angiopathies , Protein Kinase C , Capillary Permeability/drug effects , Capillary Permeability/physiology , Diabetes Mellitus , Diabetic Angiopathies/drug therapy , Diabetic Angiopathies/etiology , Diabetic Angiopathies/metabolism , Humans , Microvessels/drug effects , Microvessels/metabolism , Oxidation-Reduction/drug effects , Oxidative Stress/drug effects , Oxidative Stress/physiology , Protein Kinase C/adverse effects , Protein Kinase C/metabolism
7.
Biomed Pharmacother ; 148: 112778, 2022 Apr.
Article En | MEDLINE | ID: mdl-35272135

Stress is a condition affecting different body systems. Curcumin (CUR) is a natural compound that has various pharmacological benefits. However, its poor oral bioavailability limits its therapeutic value. This study aimed to formulating curcumin loaded chitosan nanoparticles (CS.CUR.NPs) and investigate its gastroprotective and neuroprotective effects in rats subjected to cold restraint stress (CRS), in reference to conventional oral CUR preparation, and explore its underlying mechanism. Treated groups received either CUR or CS.CUR.NPs (100 mg∕kg) orally for 14 days before exposure to CRS. CRS elicited marked behavioral changes and gastric ulcer accompanied by histopathological abnormalities of the brain and stomach along with elevation of pain score. CUR and CS.CUR.NPs improved stress-induced gastric ulcer, cognitive performance, and pain sensation. Mechanistically, CRS disrupts oxidative and inflammatory status of the brain as manifested by high malondialdehyde and IL-6 and low total antioxidant capacity and IL-10, along with high C-reactive protein level. CRS decreased nuclear factor erythroid 2-related factor2 (Nrf2) and increased nuclear factor-kappa B (NF-κB) expressions. Furthermore, brain levels of unphosphorylated signal transducer and activator of transcription3 (U-STAT3) and glial fibrillary acidic protein (GFAP) were upregulated with stress. CUR and CS.CUR.NPs provided beneficial effects against harmful consequences resulting from stress with superior beneficial effects reported with CS.CUR.NPs. In conclusion, these findings shed light on the neuroprotective effect of CUR and CS.CUR.NPs against stress-induced neurobehavioral and neurochemical deficits and protection against stress-associated gastric ulcer. Moreover, we explored a potential crosslink between neuroinflammation, U-STAT3, NF-κB, and GFAP in brain dysfunction resulted from CRS.


Curcumin/pharmacology , Nanoparticle Drug Delivery System/chemistry , Neuroprotective Agents/pharmacology , Stress, Physiological/drug effects , Animals , Behavior, Animal/drug effects , Chitosan/chemistry , Cognitive Dysfunction/pathology , Cold Temperature , Glial Fibrillary Acidic Protein/drug effects , Inflammation/pathology , Oxidation-Reduction/drug effects , Pain/pathology , Rats , STAT3 Transcription Factor/drug effects , Stomach/drug effects , Stomach Ulcer/pathology
8.
Dis Markers ; 2022: 4539932, 2022.
Article En | MEDLINE | ID: mdl-35242242

OBJECTIVE: Ischemic heart disease (IHD) has always been the focus of attention of many researchers in cardiovascular disease, and its pathogenesis is also very complicated. Ferroptosis may be involved in the occurrence and development of IHD. METHODS: First, primary cardiomyocytes were treated with H2O2 to simulate the IHD in vitro model. After pretreatment with different concentrations of ferrostatin-1, cell survival rate was detected by MTT method, cell apoptosis was detected by TUNEL staining and flow cytometry, and the expression of oxidative stress, ferroptosis, and related molecules of Nrf2/ARE pathway was detected by Western blotting (WB) and quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS: The mortality of primary cardiomyocytes in the H2O2 group was obviously increased. Ferrostatin-1 treatment can effectively inhibit cell death, improve antioxidant enzyme activity, inhibit the expression of ferroptosis-related molecules, and activate Nrf2/ARE pathway expression. CONCLUSION: Ferroptosis-specific inhibitor ferrostatin-1 relieves H2O2-induced redox imbalance in primary cardiomyocytes through the Nrf2/ARE pathway, inhibits ferroptosis, and thereby slows cardiomyocyte death.


Cyclohexylamines/antagonists & inhibitors , Ferroptosis/drug effects , Hydrogen Peroxide/pharmacology , Myocytes, Cardiac , Oxidation-Reduction/drug effects , Phenylenediamines/antagonists & inhibitors , Animals , Antioxidants/pharmacology , Apoptosis/drug effects , Cell Survival/drug effects , Female , Male , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , NF-E2-Related Factor 2/metabolism , Oxidative Stress/drug effects , Rats , Signal Transduction
9.
BMC Plant Biol ; 22(1): 98, 2022 Mar 05.
Article En | MEDLINE | ID: mdl-35247968

BACKGROUND: Hydrogen sulfide (H2S) has been proposed to exert anti-oxidative effect under many environmental stresses; however, how it influences oxidative stress remains largely unclear. RESULTS: Here, we assessed the effects of H2S on oxidative stress responses such as salicylic acid (SA)-dependent cell death, which triggered by increased H2O2 availability in Arabidopsis thaliana catalase-deficient mutants cat2 displaying around 20% wild-type catalase activity. H2S generation and its producing enzyme L-cysteine desulfhydrase (LCD/DES) were found to transient increase in response to intracellular oxidative stress. Although introducing the mutation of des1, an important LCD, into the cat2 background produced little effect, H2S fumigation not only rescued the cell death phenotype of cat2 plant, but also attenuated SA accumulation and oxidation of the glutathione pool. Unexpectedly, the activities of major components of ascorbate-glutathione pathway were less affected by the presence of H2S treatment, but decreased glycolate oxidase (GOX) in combination with accumulation of glycolate implied H2S treatment impacts the cellular redox homeostasis by repressing the GOX-catalyzed reaction likely via altering the major GOX transcript levels. CONCLUSIONS: Our findings reveal a link between H2S and peroxisomal H2O2 production that has implications for the understanding of the multifaceted roles of H2S in the regulation of oxidative stress responses.


Alcohol Oxidoreductases/drug effects , Arabidopsis/genetics , Arabidopsis/metabolism , Hydrogen Sulfide/metabolism , Oxidation-Reduction/drug effects , Oxidative Stress/drug effects , Stress, Physiological/drug effects , Alcohol Oxidoreductases/genetics , Genetic Variation , Genotype , Mutation , Oxidative Stress/genetics , Stress, Physiological/genetics
10.
Mol Cell Biochem ; 477(4): 1309-1320, 2022 Apr.
Article En | MEDLINE | ID: mdl-35138512

The prevalence of the metabolic syndrome (MetS) and its cardiac comorbidities as cardiac hypertrophy (CH) have increased considerably due to the high consumption of carbohydrates, such as sucrose and/or fructose. We compared the effects of sucrose (S), fructose (F) and their combination (S + F) on the development of MetS in weaned male Wistar rats and established the relationship between the consumption of these sugars and the degree of cardiac CH development, oxidative stress (OS) and Calcium/calmodulin-dependent protein kinase type II subunit delta oxidation (ox-CaMKIIδ). 12 weeks after the beginning of treatments with S, F or S + F, arterial pressure was measured and 8 weeks later (to complete 20 weeks) the animals were sacrificed and blood samples, visceral adipose tissue and hearts were obtained. Biochemical parameters were determined in serum and cardiac tissue to evaluate the development of MetS and OS. To evaluate CH, atrial natriuretic peptide (ANP), CaMKIIδ and ox-CaMKIIδ were determined by western blot and histological studies were performed in cardiac tissue. Our data showed that chronic consumption of S + F exacerbates MetS-induced CH which is related with a higher OS and ox-CaMKIIδ.


Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Cardiomegaly/enzymology , Dietary Carbohydrates/adverse effects , Fructose/adverse effects , Metabolic Syndrome/enzymology , Myocardium/enzymology , Oxidative Stress/drug effects , Sucrose/adverse effects , Animals , Dietary Carbohydrates/pharmacology , Fructose/pharmacology , Male , Oxidation-Reduction/drug effects , Rats , Rats, Wistar , Sucrose/pharmacology
11.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Article En | MEDLINE | ID: mdl-35131859

Bioprosthetic heart valves (BHV) fabricated from glutaraldehyde-fixed heterograft tissue, such as bovine pericardium (BP), are widely used for treating heart valve disease, a group of disorders that affects millions. Structural valve degeneration (SVD) of BHV due to both calcification and the accumulation of advanced glycation end products (AGE) with associated serum proteins limits durability. We hypothesized that BP modified with poly-2-methyl-2-oxazoline (POZ) to inhibit protein entry would demonstrate reduced accumulation of AGE and serum proteins, mitigating SVD. In vitro studies of POZ-modified BP demonstrated reduced accumulation of serum albumin and AGE. BP-POZ in vitro maintained collagen microarchitecture per two-photon microscopy despite AGE incubation, and in cell culture studies was associated with no change in tumor necrosis factor-α after exposure to AGE and activated macrophages. Comparing POZ and polyethylene glycol (PEG)-modified BP in vitro, BP-POZ was minimally affected by oxidative conditions, whereas BP-PEG was susceptible to oxidative deterioration. In juvenile rat subdermal implants, BP-POZ demonstrated reduced AGE formation and serum albumin infiltration, while calcification was not inhibited. However, BP-POZ rat subdermal implants with ethanol pretreatment demonstrated inhibition of both AGE accumulation and calcification. Ex vivo laminar flow studies with human blood demonstrated BP-POZ enhanced thromboresistance with reduced white blood cell accumulation. We conclude that SVD associated with AGE and serum protein accumulation can be mitigated through POZ functionalization that both enhances biocompatibility and facilitates ethanol pretreatment inhibition of BP calcification.


Heart Valve Diseases/drug therapy , Heart Valve Diseases/therapy , Oxazoles/pharmacology , Pericardium/drug effects , Animals , Biocompatible Materials , Calcification, Physiologic/drug effects , Calcinosis/drug therapy , Calcinosis/metabolism , Calcinosis/therapy , Cell Line , Collagen/metabolism , Ethanol/pharmacology , Glycation End Products, Advanced/metabolism , Heart Valve Diseases/metabolism , Heart Valve Prosthesis , Heterografts/drug effects , Humans , Male , Oxidation-Reduction/drug effects , Pericardium/metabolism , Rats , Rats, Sprague-Dawley , THP-1 Cells
12.
Sci Rep ; 12(1): 2512, 2022 02 15.
Article En | MEDLINE | ID: mdl-35169201

Peroxisomes play an important role in the metabolism of a variety of biomolecules, including lipids and bile acids. Peroxisomal Membrane Protein 4 (PXMP4) is a ubiquitously expressed peroxisomal membrane protein that is transcriptionally regulated by peroxisome proliferator-activated receptor α (PPARα), but its function is still unknown. To investigate the physiological function of PXMP4, we generated a Pxmp4 knockout (Pxmp4-/-) mouse model using CRISPR/Cas9-mediated gene editing. Peroxisome function was studied under standard chow-fed conditions and after stimulation of peroxisomal activity using the PPARα ligand fenofibrate or by using phytol, a metabolite of chlorophyll that undergoes peroxisomal oxidation. Pxmp4-/- mice were viable, fertile, and displayed no changes in peroxisome numbers or morphology under standard conditions. Also, no differences were observed in the plasma levels of products from major peroxisomal pathways, including very long-chain fatty acids (VLCFAs), bile acids (BAs), and BA intermediates di- and trihydroxycholestanoic acid. Although elevated levels of the phytol metabolites phytanic and pristanic acid in Pxmp4-/- mice pointed towards an impairment in peroxisomal α-oxidation capacity, treatment of Pxmp4-/- mice with a phytol-enriched diet did not further increase phytanic/pristanic acid levels. Finally, lipidomic analysis revealed that loss of Pxmp4 decreased hepatic levels of the alkyldiacylglycerol class of neutral ether lipids, particularly those containing polyunsaturated fatty acids. Together, our data show that while PXMP4 is not critical for overall peroxisome function under the conditions tested, it may have a role in the metabolism of (ether)lipids.


Fatty Acids, Unsaturated/metabolism , Fatty Acids/metabolism , Liver/metabolism , Membrane Proteins/metabolism , Signal Transduction/genetics , Animals , Bile Acids and Salts/metabolism , CRISPR-Cas Systems , Diet/methods , Female , Fenofibrate/administration & dosage , Gene Editing/methods , Gene Knockout Techniques/methods , Male , Membrane Proteins/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Oxidation-Reduction/drug effects , PPAR alpha/metabolism , Peroxisomes/drug effects , Peroxisomes/metabolism , Phytanic Acid/metabolism , Phytol/administration & dosage
13.
Pharm Biol ; 60(1): 404-416, 2022 Dec.
Article En | MEDLINE | ID: mdl-35175170

CONTEXT: Cordycepin (COR), from Cordyceps militaris L., (Cordycipitaceae), is a valuable agent with immense health benefits. OBJECTIVE: The protective effects of COR in ageing-associated oxidative and apoptosis events in vivo and hydrogen peroxide (H2O2)-exposed spermatogenesis gene alterations in TM3 Leydig cells was investigated. MATERIALS AND METHODS: Male Sprague-Dawley rats were divided into young control (YC), aged control (AC) and COR treated (COR-20) aged groups. COR-20 group received daily doses of COR (20 mg/kg) for 6 months. Cell viability and hormone levels were analysed by MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] and enzyme immunoassay kits with COR treated at 1, 5, and 10 µg/mL. Oxidative enzymes, spermatogenic, and apoptotic expression in testis tissues were evaluated by Western blotting and real-time RT-PCR. RESULTS: COR treatment (1, 5, and 10 µg/mL) significantly (p < 0.05 ∼ p < 0.001) inhibited the H2O2-induced decrease in the percentage of viable cells (from 63.27% to 71.25%, 85.67% and 93.97%, respectively), and reduced the malondialdehyde (MDA) content (from 4.28 to 3.98, 3.14 and 1.78 nM MDA/mg protein, respectively). Further, the decreased antioxidant enzymes (glutathione-S-transferase mu5, glutathione peroxidase 4 and peroxiredoxin 3), spermatogenesis-related factors (nectin-2 and inhibin-α) and testosterone levels in H2O2-exposed TM3 cells were significantly (p < 0.05 ∼ p < 0.001) ameliorated by COR. In aged rats, COR (20 mg/kg) restored the altered enzymatic and non-enzymatic antioxidative status and attenuated the apoptotic p53 and Bax/Bcl-2 expression significantly (p < 0.05). CONCLUSION: COR might be developed as a potential agent against ageing-associated and oxidative stress-induced male infertility.


Deoxyadenosines/pharmacology , Leydig Cells/drug effects , Spermatogenesis/drug effects , Testis/drug effects , Aging , Animals , Antioxidants/metabolism , Apoptosis/drug effects , Cell Line , Cell Survival/drug effects , Cordyceps/chemistry , Deoxyadenosines/isolation & purification , Hydrogen Peroxide , Leydig Cells/metabolism , Male , Mice , Oxidation-Reduction/drug effects , Oxidative Stress/drug effects , Rats , Rats, Sprague-Dawley , Signal Transduction/drug effects
14.
Int J Mol Sci ; 23(3)2022 Jan 23.
Article En | MEDLINE | ID: mdl-35163169

The antioxidant/pro-oxidant activity of drugs and dietary molecules and their role in the maintenance of redox homeostasis, as well as the implications in health and different diseases, have not yet been fully evaluated. In particular, the redox activity and other interactions of drugs with essential redox metal ions, such as iron and copper, need further investigation. These metal ions are ubiquitous in human nutrition but also widely found in dietary supplements and appear to exert major effects on redox homeostasis in health, but also on many diseases of free radical pathology. In this context, the redox mechanistic insights of mainly three prototype groups of drugs, namely alpha-ketohydroxypyridines (alpha-hydroxypyridones), e.g., deferiprone, anthraquinones, e.g., doxorubicin and thiosemicarbazones, e.g., triapine and their metal complexes were examined; details of the mechanisms of their redox activity were reviewed, with emphasis on the biological implications and potential clinical applications, including anticancer activity. Furthermore, the redox properties of these three classes of chelators were compared to those of the iron chelating drugs and also to vitamin C, with an emphasis on their potential clinical interactions and future clinical application prospects in cancer, neurodegenerative and other diseases.


Antioxidants/pharmacology , Chelating Agents/chemistry , Transition Elements/chemistry , Anthraquinones/chemistry , Anthraquinones/pharmacology , Antioxidants/chemistry , Chelating Agents/pharmacology , Coordination Complexes/chemistry , Copper/chemistry , Doxorubicin/chemistry , Doxorubicin/pharmacology , Free Radicals/chemistry , Iron/chemistry , Iron Chelating Agents/chemistry , Iron Chelating Agents/pharmacology , Oxidation-Reduction/drug effects , Pyridines/chemistry , Pyridines/pharmacology , Reactive Oxygen Species/chemistry , Thiosemicarbazones/chemistry , Thiosemicarbazones/pharmacology
15.
Molecules ; 27(4)2022 Feb 18.
Article En | MEDLINE | ID: mdl-35209168

Benzo[a]pyrene (BaP) is a polycyclic aromatic hydrocarbon (PAH) primarily formed by burning of fossil fuels, wood and other organic materials. BaP as group I carcinogen shows mutagenic and carcinogenic effects. One of the important mechanisms of action of (BaP) is its free radical activity, the effect of which is the induction of oxidative stress in cells. BaP induces oxidative stress through the production of reactive oxygen species (ROS), disturbances of the activity of antioxidant enzymes, and the reduction of the level of non-enzymatic antioxidants as well as of cytokine production. Chemical compounds, such as vitamin E, curcumin, quercetin, catechin, cyanidin, kuromanin, berberine, resveratrol, baicalein, myricetin, catechin hydrate, hesperetin, rhaponticin, as well as taurine, atorvastatin, diallyl sulfide, and those contained in green and white tea, lower the oxidative stress induced by BaP. They regulate the expression of genes involved in oxidative stress and inflammation, and therefore can reduce the level of ROS. These substances remove ROS and reduce the level of lipid and protein peroxidation, reduce formation of adducts with DNA, increase the level of enzymatic and non-enzymatic antioxidants and reduce the level of pro-inflammatory cytokines. BaP can undergo chemical modification in the living cells, which results in more reactive metabolites formation. Some of protective substances have the ability to reduce BaP metabolism, and in particular reduce the induction of cytochrome (CYP P450), which reduces the formation of oxidative metabolites, and therefore decreases ROS production. The aim of this review is to discuss the oxidative properties of BaP, and describe protective activities of selected chemicals against BaP activity based on of the latest publications.


Antioxidants/pharmacology , Benzo(a)pyrene/pharmacology , Oxidants/pharmacology , Oxidative Stress/drug effects , Animals , Antioxidants/chemistry , Benzo(a)pyrene/chemistry , Biomarkers , Disease Susceptibility , Energy Metabolism/drug effects , Gene Expression Regulation/drug effects , Humans , Lipid Peroxidation/drug effects , Molecular Structure , Oxidants/chemistry , Oxidation-Reduction/drug effects , Reactive Oxygen Species/metabolism
16.
Food Chem ; 384: 132473, 2022 Aug 01.
Article En | MEDLINE | ID: mdl-35219235

The antioxidant effect of quercetin on hemoglobin(Hb)-mediated lipid oxidation and the mechanisms involved were investigated. Quercetin strongly inhibited Hb-mediated lipid oxidation in washed muscle. Quercetin showed effective hydroxyl radical scavenging ability similar to butylated hydroxytoluene (BHT). Quercetin reduced metHb resulting in formation of oxyHb. Bound quercetin decreased heme dissociation from metHb. Conversion to oxyHb and decreased heme dissociation represent routes to limit Hb-mediated lipid oxidation. Electrospray ionization mass spectrometry (ESI-MS) indicated one molecule of quercetin was covalently bound to Hb α-chain. Quercetin quinone docked 3.3 Å from the thiol of αCys(H15) but not near any other Cys residues of turkey Hb. At the docking site, hydrogen bonding between quercetin quinone and amino acids of α- and ß-chain was demonstrated. This represents a path by which quercetin became covalently bound to α-chain. Molecular docking of heme proteins to polyphenols provides a template to better understand antioxidant interactions in muscle foods.


Hemoglobins , Lipids , Quercetin , Antioxidants/chemistry , Heme/chemistry , Hemoglobins/antagonists & inhibitors , Hemoglobins/chemistry , Hemoglobins/metabolism , Lipids/chemistry , Molecular Docking Simulation , Oxidation-Reduction/drug effects , Quercetin/chemistry , Quercetin/pharmacology
17.
Int J Mol Sci ; 23(4)2022 Feb 15.
Article En | MEDLINE | ID: mdl-35216248

Polyamine oxidation plays a major role in neurodegenerative diseases. Previous studies from our laboratory demonstrated that spermine oxidase (SMOX, a member of the polyamine oxidase family) inhibition using MDL 72527 reduced neurodegeneration in models of retinal excitotoxicity and diabetic retinopathy. However, the mechanisms behind the neuroprotection offered by SMOX inhibition are not completely studied. Utilizing the experimental model of retinal excitotoxicity, the present study determined the impact of SMOX blockade in retinal neuroinflammation. Our results demonstrated upregulation in the number of cells positive for Iba-1 (ionized calcium-binding adaptor molecule 1), CD (Cluster Differentiation) 68, and CD16/32 in excitotoxicity-induced retinas, while MDL 72527 treatment reduced these changes, along with increases in the number of cells positive for Arginase1 and CD206. When retinal excitotoxicity upregulated several pro-inflammatory genes, MDL 72527 treatment reduced many of them and increased anti-inflammatory genes. Furthermore, SMOX inhibition upregulated antioxidant signaling (indicated by elevated Nrf2 and HO-1 levels) and reduced protein-conjugated acrolein in excitotoxic retinas. In vitro studies using C8-B4 cells showed changes in cellular morphology and increased reactive oxygen species formation in response to acrolein (a product of SMOX activity) treatment. Overall, our findings indicate that the inhibition SMOX pathway reduced neuroinflammation and upregulated antioxidant signaling in the retina.


Neuroinflammatory Diseases/drug therapy , Neuroinflammatory Diseases/metabolism , Oxidoreductases Acting on CH-NH Group Donors/antagonists & inhibitors , Retina/diagnostic imaging , Retina/metabolism , Animals , Antioxidants/metabolism , Diabetic Retinopathy/drug therapy , Diabetic Retinopathy/metabolism , Disease Models, Animal , Male , Mice , Mice, Inbred C57BL , Neurodegenerative Diseases/drug therapy , Neurodegenerative Diseases/metabolism , Oxidation-Reduction/drug effects , Putrescine/analogs & derivatives , Putrescine/pharmacology , Signal Transduction/drug effects
18.
Int J Mol Sci ; 23(4)2022 Feb 18.
Article En | MEDLINE | ID: mdl-35216367

Aluminum (Al) is one of the most abundant elements on Earth, and its high extraction rate and industrial use make human exposure very common. As Al may be a human toxicant, it is important to investigate the effects of Al exposure, mainly at low doses and for prolonged periods, by simulating human exposure. This work aimed to study the effects of low-dose exposure to chloride aluminum (AlCl3) on the oxidative biochemistry, proteomic profile, and morphology of the major salivary glands. Wistar male rats were exposed to 8.3 mg/kg/day of AlCl3 via intragastric gavage for 60 days. Then, the parotid and submandibular glands were subjected to biochemical assays, proteomic evaluation, and histological analysis. Al caused oxidative imbalance in both salivary glands. Dysregulation of protein expression, mainly of those related to cytoarchitecture, energy metabolism and glandular function, was detected in both salivary glands. Al also promoted histological alterations, such as acinar atrophy and an increase in parenchymal tissue. Prolonged exposure to Al, even at low doses, was able to modulate molecular alterations associated with morphological impairments in the salivary glands of rats. From this perspective, prolonged Al exposure may be a risk to exposed populations and their oral health.


Aluminum/adverse effects , Salivary Glands/drug effects , Salivary Glands/metabolism , Aluminum Chloride/adverse effects , Animals , Male , Oxidation-Reduction/drug effects , Oxidative Stress/drug effects , Proteomics/methods , Rats , Rats, Wistar
19.
Sci Adv ; 8(5): eabl8920, 2022 02 04.
Article En | MEDLINE | ID: mdl-35108055

Dexamethasone is widely used as an immunosuppressive therapy and recently as COVID-19 treatment. Here, we demonstrate that dexamethasone sensitizes to ferroptosis, a form of iron-catalyzed necrosis, previously suggested to contribute to diseases such as acute kidney injury, myocardial infarction, and stroke, all of which are triggered by glutathione (GSH) depletion. GSH levels were significantly decreased by dexamethasone. Mechanistically, we identified that dexamethasone up-regulated the GSH metabolism regulating protein dipeptidase-1 (DPEP1) in a glucocorticoid receptor (GR)-dependent manner. DPEP1 knockdown reversed the phenotype of dexamethasone-induced ferroptosis sensitization. Ferroptosis inhibitors, the DPEP1 inhibitor cilastatin, or genetic DPEP1 inactivation reversed the dexamethasone-induced increase in tubular necrosis in freshly isolated renal tubules. Our data indicate that dexamethasone sensitizes to ferroptosis by a GR-mediated increase in DPEP1 expression and GSH depletion. Together, we identified a previously unknown mechanism of glucocorticoid-mediated sensitization to ferroptosis bearing clinical and therapeutic implications.


Dexamethasone/pharmacology , Dipeptidases/genetics , Ferroptosis/drug effects , Ferroptosis/genetics , Gene Expression Regulation/drug effects , Glutathione/metabolism , Receptors, Glucocorticoid/metabolism , Carbolines/adverse effects , Carbolines/pharmacology , Cell Line , Dipeptidases/metabolism , Fluorescent Antibody Technique , GPI-Linked Proteins/genetics , GPI-Linked Proteins/metabolism , Gene Knockdown Techniques , Humans , Immunophenotyping , Oxidation-Reduction/drug effects , Piperazines/adverse effects , Piperazines/pharmacology
20.
J Ethnopharmacol ; 290: 115100, 2022 May 23.
Article En | MEDLINE | ID: mdl-35151835

ETHNOPHARMACOLOGICAL RELEVANCE: The natural extract glaucocalyxin A (GLA), purified from the aboveground sections of the Chinese traditional medicinal herb Rabdosia japonica (Burm. f.) Hara var. glaucocalyx (Maxim.) Hara, has various pharmacological benefits, such as anti-bacterial, anti-coagulative, anti-neoplastic, and anti-inflammatory activities. Although GLA has shown anti-tumor activity against various cancers, the therapeutic potential and biological mechanisms of GLA remain to be further explored in oral squamous cell carcinoma (OSCC). AIM OF THE STUDY: This study aimed to elucidate the therapeutic potential and regulatory mechanisms of GLA in OSCC. MATERIALS AND METHODS: The cell proliferation and apoptosis effects of GLA were analyzed by CCK-8, clone formation, Annexin V/PI staining, and apoptotic protein expression in vitro. An OSCC xenograft model was applied to confirm the anti-neoplastic effect in vivo. Furthermore, the changes of reactive oxygen species (ROS) were determined by DCFH-DA probe and GSH/GSSG assay, and inhibited by the pan-caspase inhibitor Z-VAD(OMe)-FMK and the ROS scavenger N-acetylcysteine (NAC). The modulation of GLA on mitochondria and ER-dependent apoptosis pathways was analyzed by JC-1 probe, quantitative real-time PCR, and Western blot. Finally, public databases, clinical samples, and transfection cells were analyzed to explore the importance of GLA's indirect targeting molecule CHAC1 in OSCC. RESULTS: GLA significantly inhibited cell proliferation and induced apoptosis in vitro and in vivo. GLA perturbed the redox homeostasis, and cell apoptosis was totally rescued by Z-VAD(OMe)-FMK and NAC. Furthermore, GLA activated the mitochondrial apoptosis pathway. Simultaneously, the overexpression and knockdown of CHAC1 dramatically affected GLA-mediated apoptosis. The endoplasmic reticulum stress-associated ATF4/CHOP signal was identified to participate in GLA-upregulated CHAC1 expression. Finally, we found that CHAC1 expression was lower in OSCC compared with normal tissues and positively correlated with 4-Hydroxynonenal (4-HNE) level. High CHAC1 expression also indicated better overall survival. Moreover, CHAC1 selectively regulated the viability of oral cancer cells. CONCLUSION: GLA is a promising therapeutic agent that activates the ROS-mediated ATF4/CHOP/CHAC1 axis in OSCC patients.


Activating Transcription Factor 4/drug effects , Carcinoma, Squamous Cell/pathology , Diterpenes, Kaurane/pharmacology , Mouth Neoplasms/pathology , Transcription Factor CHOP/drug effects , gamma-Glutamylcyclotransferase/drug effects , Animals , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Endoplasmic Reticulum Stress/drug effects , Humans , Isodon , Male , Mice , Mice, Inbred BALB C , Mitochondria/drug effects , Oxidation-Reduction/drug effects , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects , Xenograft Model Antitumor Assays
...